Liu Zhe, Li Yu, Yang Yi-Feng. Possible nodeless s±-wave superconductivity in twisted bilayer graphene. Chinese Physics B, 2019, 28(7): 077103
Permissions
Possible nodeless s±-wave superconductivity in twisted bilayer graphene
Liu Zhe1, Li Yu1, 2, Yang Yi-Feng1, 2, 3, 4, †
Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
University of Chinese Academy of Sciences, Beijing 100049, China
Songshan Lake Materials Laboratory, Dongguan 523808, China
Collaborative Innovation Center of Quantum Matter, Beijing 100190, China
† Corresponding author. E-mail: yifeng@iphy.ac.cn
Abstract
The recent discovery of superconductivity in the twisted bilayer graphene has stimulated numerous theoretical proposals concerning its exact gap symmetry. Among them, the d+ id or p+ ip-wave was believed to be the most plausible solution. Here, considering that the superconductivity emerges near a correlated insulating state and may be induced by antiferromagnetic spin fluctuations, we apply the strong-coupling Eliashberg theory with both inter- and intraband quantum critical pairing interactions and discuss the possible gap symmetry in an effective low-energy four-orbital model. Our calculations reveal a nodeless s±-wave as the most probable candidate for the superconducting gap symmetry in the experimentally relevant parameter range. This solution is distinctly different from previous theoretical proposals. It highlights the multi-gap nature of the superconductivity and puts the twisted bilayer graphene in the same class as the iron-pnictide, electron-doped cuprate, and some heavy fermion superconductors.
Trambly de Laissardi‘ereGMayouDMagaudL2012Phys. Rev. B86125413http://dx.doi.org/10.1103/PhysRevB.86.125413
[11]
Lopes dos SantosJ M BPeresN M RCastro NetoA H2012Phys. Rev. B86155449http://dx.doi.org/10.1103/PhysRevB.86.155449
[12]
BrihuegaIMalletPGonzález-HerreroHTrambly de Laissardi‘ereGUgedaM MMagaudLGómez-RodríguezJ MYnduráinFVeuillenJ Y2012Phys. Rev. Lett.
109196802http://dx.doi.org/10.1103/PhysRevLett.109.196802
KimKDaSilvaAHuangSFallahazadBLarentisSTaniguchiTWatanabeKLeRoyB JMacDonaldA HTutucE2017Proc. Natl. Acad. Sci. USA
1143364http://dx.doi.org/10.1073/pnas.1620140114
[19]
HuderLArtaudAQuangT Lde Laissardi‘ereG TJansenA G MLapertotGChapelierCRenardV T2018Phys. Rev. Lett.
120156405http://dx.doi.org/10.1103/PhysRevLett.120.156405
[20]
Lopes dos SantosJ M BPeresN M RCastro NetoA H2007Phys. Rev. Lett.
99256802http://dx.doi.org/10.1103/PhysRevLett.99.256802
ArndtJStockertOSchmalzlKFaulhaberEJeevanH SGeibelCSchmidtWLoewenhauptMSteglichF2011Phys. Rev. Lett.
106246401http://dx.doi.org/10.1103/PhysRevLett.106.246401
[77]
VieyraH AOeschlerNSeiroSJeevanH SGeibelCParkerDSteglichF2011Phys. Rev. Lett.
106207001http://dx.doi.org/10.1103/PhysRevLett.106.207001
[78]
KittakaSAokiYShimuraYSakakibaraTSeiroSGeibelCSteglichFIkedaHMachiaK2014Phys. Rev. Lett.
112067002http://dx.doi.org/10.1103/PhysRevLett.112.067002